More than you ever wanted to
know about GCC, GAS and ELF.

SHARE 98 Nashville, TN
Session 8131 March 2002

David Bond
Tachyon Software LLC
dbond@tachyonsoft.com

© Tachyon Software LLC, 2002

Permission is granted to SHARE Incorporated to publish this material for
SHARE activities and for others to copy, reproduce, or republish this material
in a manor consistent with SHARE's By-laws and Canons of Conduct.
Tachyon Software retains the right to publish this material elsewhere.

Tachyon Software is a registered trademark and Tachyon z/Assembler is a
trademark of Tachyon Software LLC.

IBM, HLASM, OS/390, z/OS, z/Architecture, zSeries and System/390 are
trademarks or registered trademarks of the International Business Machines
Corporation.

LINUX is a registered trademark of Linus Torvalds.

Other trademarks belong to their respective owners.

Terminology

0S/390

C/C++ Compiler
HLASM

Binder

TSO TEST, IPCS
GOFF

Program Object

DLL

Dump Data Set

SYM records, ADATA
Language Environment

Linux

gcc

as

1d

gdb

ELF relocatable
ELF executable
ELF Shared Object
ELF “core” file
DW ARF

glibc

ELF

DWARF

GCC

GAS

Executable and Linkable Format

Format of object, executable and dump files

Debug With Arbitrary Record Format

Format of debugging records inside ELF files

GNU Compiler Collection

C, C++, JAVA, FORTRAN, ADA and other compilers

GNU Assembler

Assembler included with GNU tools

Linux Development Packages

gcce GNU Compiler Collection
(C, C++, Objective C, FORTRAN, JAVA,ADA)
binutils assembler, linker
gdb debugger
glibc GNU C/C++ library
make make

Each of these packages are available at different levels.
A given Linux distribution will provide a copy of these
packages at some level. You can install other levels, as
long as you watch for compatibility. For example, a given
level of gcc may require a certain minimum binutils level.

For example, binutils 2.10 is required for gcc 3.0, at least for the S/390 version.
gce 3.0 generates some instruction operation codes that were not supported by the
GNU assembler prior to binutils 2.10.

C/C++ Compile Flow

C/C++ BEE e glibc
Source libraries
C/C++ as a l
compiler / \ 1d
Headers from: Assembler ELF / ELF
glibe, gee, Linux source Relocatable Executable

gcc is the controller program for the compile process. Unless told to do otherwise, it
will invoke the C/C++ preprocessor, C/C++ compiler, the assembler (as) and the
linker (1d).

The C/C++ preprocessor reads the source and header files. The header files are
provided by glibc, gcc, Linux and the application. The preprocessed C/C++ source
code is passed to the C/C++ compiler.

The C/C++ compiler reads the preprocessed source code and generates an
intermediate work file containing assembler source code (gas format). gcc can be
told (via the -S option) to retain the assembler source file (filename.s) and to not
invoke the assembler.

gcc normally invokes the GNU assembler and deletes the temporary assembler
source file. The assembler produces an ELF relocatable object file, normally as a
temporary work file that is passed to the linker. If gcc is invoked with the -c option,
the object file (filename.o) will be retained and the linker will not be invoked.

If run without either -S or -c, gcc then invokes the linker and deletes the temporary
object file. The linker combines the object file with object modules from various
libraries (mostly glibc) and produces and ELF executable program.

You can run gcc with the -v option to see what programs are invoked.

Why does GCC produce
assembler source?

GCC is complex:

*Multiple languages (C, C++, FORTRAN, ADA..)

*Multiple operating systems (Linux, AIX, Solaris, Windows...)
eMultiple architectures (Intel/x86, PowerPC, Sparc, S/390...)
*Multiple object file formats (COFF, ELF...)

*Multiple debugging formats (DBX, DWARF..))

By producing assembler source, many of the details can be left to the
assembler. The OS-supplied assembler can be used, or the GNU
assembler (GAS) can be built for the target architecture and OS.

GCC can be built as a cross-compiler and GAS can be built as
a cross-assembler, allowing compiles on one system which are
targeted for another.

GCC must be aware of the target object file format and debugging information
format in order to pass the correct information to the assembler. For instance, even
though the assembler directives for producing DBX and DWARF debugging
information are the same, the information content is different, so it is up to GCC to
include the correct information. However, it is up to the assembler to actually
produce the output files, so only the assembler has to know the physical file formats.

Since GCC supports multiple programming languages, each language has a unique
front-end processor and uses the common back-end code generator. The front-end
processor is almost completely independent of the target architecture and the back-
end is relatively independent of the source language. Only the back-end of GCC
needs to be ported to new architectures, and once the port is done, all of the GCC
languages are available.

How good is GCC?

GCC is open-source, so it is as good as the effort put into it.

eIntel/x86 optimization is very good.

*Dave Pitts' 1370 port generates HLASM and works with
0S/390 USS and LE, however there is no optimizer.

*S/390 and S/390x (z/Architecture) ports are excellent.

They were contributed by the same IBM group that writes
millicode for the Z900. They have a deep understanding of
the S/390 and z/Architecture, so the optimizer is outstanding
(and getting better).

Major improvements as of gcc 3.02 — try it!

Dave Pitts' I370 port is available in source and executable form from:
http://www.cozx.com/~dpitts/gcc.html

The GCC home page is:

http://www.gnu.org/software/gcc/index.html

The GCC site includes information about recent and upcoming releases and links

to sites from which the source can be downloaded. It is relatively easy to download,
compile and install a new release of GCC. Patch files can be downloaded to upgrade
the source of one release to another. (e.g. From 3.0.2 to 3.0.3)

At this time, GCC 3.03 is current. 3.03 is mostly C++ bug fixes for 3.02.
The next major release is 3.1, scheduled for April 15, 2002, with maintenance
releases scheduled for June 15 and August 15.

GCC releases are controlled by the GCC Steering Committee. Resources are
largely provided by Cygnus/Red Hat.

The primary maintainer of the Linux for S/390 and zSeries version of GCC is
Hartmut Penner of IBM Germany.

S/390 and z/Architecture Tools

GCC supports both s390 and s390x from the same program.
The default is s390 (31-bit). Use the -m64 compiler option
to generate s390x (64-bit z/Architecture) code.

binutils and glibc must be built for either s390 or s390x
and the correct version must be used.

s390 version requires Relative and Immediate instruction set
support. IEEE floating point is assumed, but can be provided
by emulation in Linux for S/390.

Linux for S/390 can only run on machines with the Relative and Immediate
instruction set support since Linux for S/390 is built using GCC. However, Linux for
S/390 can emulate the S/390 advanced floating point instructions in software so it
does not require IEEE floating point support.

Since the z/Architecture includes the Relative and Immediate instructions and IEEE
floating point support, Linux for zSeries has no special hardware requirements
beyond a z800 or z900 machine.

C Source Program

>cat hello.c
#include <stdio.h>
int main(

int argc,

char * argvlI[])

puts("Hello world.");
return 0;

}

>gcc -03 -S hello.c

This is the classic “Hello world” program in C.
The UNIX/Linux “cat” command can be used to print a file to the terminal.

The hello.c program is compiled with the -O3 flag for maximum optimization and
the -S flag to cause the compiler to generate the assembler source file and stop.
If the compile is successful, the assembler source will be put in a file named hello.s

GAS Source — page 1 of 2

>cat hello.s

.file "hello.c" #data for .note section
.section.rodata #start .rodata section
.align 2 #halfword alignment
.LC18: #internal label
.string "Hello world." #define string constant
.text #start .text section
.align 4 #fullword alignment
.globl main #entry point definition
.type main,@function
main:
stm %$rl3,%rl5,52(%rl5) #save caller's registers
bras %rl1l3,.LTNO 0 #R13=literal base
.LTO O:
.LC19:
.long .LC18 #address of string constant

This is the 31-bit GNU assembler code produced by GCC 3.02 for Linux for S/390.
The comments generated by GCC are omitted. The comments to the right of the
GNU assembler code were added by hand.

GAS Source — page 2 of 2

#address of puts function

#stack frame setup

#set return value
#restore return address
#restore caller's registers
#return to caller

.LC20:
.long puts
.LTNO O:
1lr %$rl,%rl5
ahi %$rl5,-96
st %rl,0(%rl5)
1 %$r3, .LC20-.LTO_O0(%rl13)#call puts function
1 %$r2, .LC19-.LTO0 0(%rl3)
basr %rl4,%r3
lhi $r2,0
1 %$r4,152 (%rl5)
lm %$rl3,%rl5,148 (%$rl5)
br %Sré
.Lfel:
.size main, .Lfel-main
.ident "GCC: (GNU) 3.0.2"

#data for .comment section

GAS Syntax

GAS is free-form. Continuation is indicated by ending a line
with a backslash (\), just like C. Multiple statements are
allowed per line, each ended with a semicolon (;).

Comments start with a pound sign/hash mark (#) and
continue for the rest of the line. Continuation is allowed.

Labels end with a colon (:). Assembler directives start
with a period (.). Everything else is a machine instruction.

Symbols consist of the letters A-Z, a-z, digits 0-9, underscore
(), dollar sign ($) and period(.). Symbols are case sensitive.

GAS has no HLASM-like macro facility.

UNIX and LINUX are C-based, so it is natural that the GNU assembler syntax details
are very C-like.

GCC allows assembler instructions to be included in C and C++ code using the asm
language extension. GCC writes these assembler instructions directly to the GAS
file.

The primary use of GAS is as a compiler back-end. Very little of LINUX code is
written in assembler, even in the kernel. Because few humans code in GNU
assembler, GAS does not need the level of sophistication found in HLASM
(powerful macros, DSECTs, USINGs, good diagnostics).

Registers, Labels, Numbers

Registers:
%$r0 -%rl5 General registers

%f0 -%£f15 Floating point registers
Current location counter (like HLASM *)

Labels:
Lxxxx: Internal label — not visible in debugger
0: -9: temporary labels, referenced by (for example)

0B (backward reference) or 1F (forward reference).
If not defined, symbols are assumed to be external references.

Numbers:

C-like syntax, if starts with 0x, remainder of number is
hexadecimal, if starts with Ob, remainder of number is binary,
otherwise if starts with 0, number is octal, otherwise decimal.

Temporary labels are very nice features of the GNU assembler language. They allow
local labels to be defined without the need to resort to HLASM's &SYNDX variable
symbol. For instance, a reference to 2F is resolved to the next (forward) definition of
the temporary label 2 : and a reference to 9B is resolved to the nearest previous
(backward) definition of the temporary label 9.

As an example, the following code is generated by GCC for the strlen() function:
sr 0,0

1r %rl2,%rll
0: srst O0,%rl2

jo 0b

1r %$rl2,0

sr %rl2,%rll

This same code sequence could be generated later without any conflict between the
definitions of 0 = .

M achine Instructions

GAS machine instructions are similar to HLASM format, except:

In RX instructions, the base and index registers are reversed.
If only one register is specified, it is assumed to be a base register.

Additional branch mnemonics (GAS: HLASM)

JHE: BRC 10 JLE: BRC 12 JLH: BRC 6
JNHE: BRC 5 JNLE: BRC 3 JNLH: BRC 9
Same for BC and BCR mnemonics.

Different BRCL mnemonics (GAS: HLASM)

JG: JLU JGE: JLE JGH: JLH
JGHE: BRCL 10 JGL: JLL JGLE: BRCL 12
JGLH: BRCL 6 JGM: JLM JGNE: JLNE
JGNH: JLNH JGNHE: BRCL 5 JGNL: JLNL

... etc.

GCC/GAS introduced extended mnemonics for the 6 condition code masks missing
from the HLASM extended mnemonics. Unfortunately, the GCC/GAS JLE and JLH
extended mnemonics for BRC conflict with the HLASM extended mnemonics for
BRCL. GCC/GAS replaced the JLxxx (Jump Long) extended mnemonics for BRCL
with the JGxxx (Jump Grande) mnemonics.

See http://www.tachyonsoft.com/txac.htm for instruction tables that include the
GCC/GAS extended mnemonics. These tables include instructions from all of the
Principles of Operation books as well instructions published in other IBM manuals or
discovered from other sources.

Storage Definition Directives

GAS HLASM

.byte DC X'xx'

.short DC HL2'nn'

Jong DC FL4'nn' or DC AL4(symbol)
.quad DC FDL8'nn' or DC ADLS8(symbol)
.single DC EBL4'nn'

.double DC DBLS8'nn'

.comm COM, DS

.ascii DC C'ccccc'

.string DC C'cceec',X'0'

GAS does not align constants based on type.

GCC does not produce .single and .double — IEEE value
is generated by .long 0xX XX XX XXX constants.

.ascii and .string use C-like syntax for characters,
including escape values. (e.g. "\n\0")

GAS does not align anything. Even machine instructions are not halfword aligned!
However the .align directive can align to any power of 2.

.ascii and .string operands are strings enclosed in double quotes. The .string directive

includes a terminating X'00' byte in the string. .string "hello" is the same as
.ascii "hello\O".

.ascii and .string operands can include “escape” values:
\a=X'07"(BEL) \Wb=X'08(BS) \f=X'0C" (FF)
\n=X'0A"(LF) \r=X'0D'(CR) \t=X'09'(TAB)
\v=X'0B'(VT) \"=double quote \\=back slash
\x<hex digits> = X'<hex digits>" \<octal digits>

.byte, .short, .long and .quad operands can be expressions. Numbers are decimal
unless they start with a zero. Zero is the “escape” character, allowing octal,
hexadecimal (0x) or binary values (Ob). Character values can also be included
(e.g. 'a") and support the same set of escape values as can be specified in .ascii
and .string operands.

Miscellaneous Directives

GAS HLASM
.align CNOP
file none
.globl ENTRY
.ddent none
Jocal none
.0rg ORG
.set EQU
.Size none
.stab ADATA
.type XATTR
.version none
.weak WXTRN

Notes: .org is forward only. .align fills with X'07' bytes by default.

Unlike HLASM's EQU, .set can be used more than once for the same symbol,
allowing a symbol to have a different value for different parts of the assembly.
.set can also be used to change the value of the location counter in a forward
direction: .set .,.+4

.align fills with X'07' bytes generating “NOPR 7” instructions in any halfwords.

The inability of the GNU assembler to support ORG to a previous location vastly
simplifies the assembler logic!

Section Definitions

GAS HLASM
text RSECT
.data CSECT
.bss COM

.section RSECT/CSECT/LOCTR

GAS ELF sections are similar to HLASM GOFF classes.
There is no GAS equivalent to DXD or DSECT.

.text is read-only executable code and literals

.data is modifiable initialized storage

.bss is modifiable uninitialized storage

Other sections may be defined, e.g. .rodata is for read-only data.

.text, .data, .bss and .rodata are the only sections generated by GCC for normal C
code.

For C++ code, GCC generates many additional sections that are recognized by the
GNU linker for special processing. These special sections are to handle static
constructors and destructors and other C++ features that must be processed at link
time.

Linux/390 Register Usage

RO-R1 Not saved
R2-R3 Not saved, parameters and return values
R4-R5 Not saved, parameters
R6 Saved, parameter
R7-R12 Saved
R13 Saved, often literal pool base register
R14 Not saved, return address
R15 Saved, stack pointer
FO Not saved, parameter and return value
F2 Not saved, parameter
F4,F6 Saved, z/Architecture parameters
F1,F3,F5,F7-F15 Not saved
Access Registers Not saved
Function return values:
Type Linux for S/390 Linux for zSeries
char, short, int, long, * R2 R2
or 1, 2 and 4-byte structures
long long and 8-byte structures R2 and R3 R2
float, double FO FO

Function parameter values:

First 5 integer (char, short, int, long, long long) and pointer parameters are passed in
registers R2, R3, R4, R5 and R6. For Linux for S/390, long long parameters are
passed in register pairs. Structures of 1, 2, 4 or 8 bytes are passed as integers.

In Linux for S/390, first 2 floating point parameters are passed in FO and F2. In
Linux for zSeries, first 4 floating point parameters are passed in FO, F2, F4 and Fo6.

All other parameters are passed on the stack. Ifthe return value is not an integer,
pointer, float, double or 1, 2, 4 or 8-byte structure, a “hidden” parameter in R2
will contain the address of the return area.

Linux/390 Stack Frame

S/390 zSeries Purpose

0-3 0-8 back chain

4-15 8-31 reserved

16-23 32-47 scratch area

24-63 48-127 saved r6-r15 of caller function
64-79 128-143 saved f4 and f6 of caller function
80-95 144-159 undefined

96 160 outgoing args passed from caller to callee
96+x 160+x possible stack alignment to 8-bytes
96+x+y 160+x+y alloca space of caller (if used)
96+x+ytz 160+x+y+z automatics of caller (if used)

Only the registers that are modified by a function need to be saved.
The stack grows toward lower addresses.

Stack frames are always double-word aligned.

The stack of the process's initial thread starts at the high end of virtual storage and
grows down. For Linux for S/390, the high end is X"7FFFFFFF' (2G-1).

In Linux for zSeries 2.4, 42 bits of the 64-bit possible virtual storage range are used,
so the highest address is X'000003FF FFFFFFFF' (4T-1).

Linux threads are like OS/390 tasks. Each thread has its own stack.

GCC Output — Notes

.section .rodata A half-word aligned,
.align 2 null-terminated ASCII
.LC18: string constant is defined
.string "Hello world.n inthe rodatasection.
text An externally visible function
.align 4 named “main” is defined in

the .text section. It is fullword
; ") aligned. The function saves
-type main,@function only r13,rl14 and rl5 since

main: those are the only non-
stm %rl3,%rl5,52(%rl5) yolatile registers modified.

.globl main

GAS uses the strongest .align directive within a section to set the alignment for the
section. When combining sections, the linker uses the strongest alignment contributed
by any object module for the section alignment within the program.

GCC generates the minimum STM instruction required to save registers that must be
preserved when control is returned to the caller. When generating code, GCC

first tries to use the volatile registers (0-5), which are the registers that a caller does
not expect to be preserved across a call. If all of the volatile registers are used, GCC
uses the highest numbered register available. This allows GCC to generate minimal
STM/LM instructions in the function prolog and epilog.

GCC Output — Notes

bras %rl13,.LTNO 0 Register 13 issetup as the

.LTO O: base register for the literal pool.
.LC19: Two address constants are in
long LC18 the literal pool: the address of

the string constant in .rodata

-LC20: and the address of the external
-long puts function named “puts”.
.LTNO O:
A new stack frame of 96 bytes
lr %$rl,%rl5

is allocated and the address of

ahi :«rl 5, - ? 6 the caller's stack frame is saved
st %rl,0(%rl5) (back chain).

If a function does not call another function, it is called a “leaf” function. Leaf
functions that do not modify any of the caller's non-volatile registers do not need to
save and restore any registers, so no stack frame is needed.

The GCC “literal pool” is actually a set of constants generated near the start of each
function and usually addressed via R13 which is set up via the BRAS instruction.
The label LTO_0 for this function is used as the base address of the literal pool
when literals are referenced.

If local variables need to be allocated in the function's stack frame, more than 96
bytes would be needed and the AHI instruction would reflect this. The stack frame
size is always a multiple of 8 to ensure that stack frames are doubleword aligned.

GCC Output — Notes

Register 3 is loaded

1 %r3, .LC20-.LTO_O0(%r13) Withtheaddressof
1 %$r2, .LC19-.LTO 0 (%r13) the “puts” function;
basr %rl4,%r3 - register 2 is loaded with

the first parameter;
“ puts” function called.

The return value is loaded

lhi %$r2,0 into register 2; the return

1 %r4,152(%r1l5) address is loaded into
lm %rl3,%rl5,148 (%rl5) register 4; registers 13 and
br %r4 15 are restored; control is

returned to the caller.

GCC generates explicit displacement values for literal references by subtracting the
base address of the literal pool (LTO 0 in this case) from the address of the literal.

Unlike OS/360 standard linkage conventions, Linux/390 does not require that the
called routine's address be in any specific register. Called routines cannot expect
that the starting address is in a register.

In the call to the “puts” function, the load for the address of “puts” is performed
as far in advance of the BASR as possible to reduce pipeline stalls. The load
instructions for R2 and R3 can run in parallel.

In the function epilog, the three instruction sequence (L,LM,BR) is used instead
of the minimal two instruction sequence (LM 13,15,148(15);BR 14) to allow the
maximum amount of parallelism. In the three instruction sequence, the LM
instruction can execute in parallel with the BR and subsequent instructions.
Session 8158 (8:00AM Thursday) discusses these performance issues.

Because GCC understands how to exploit instruction parallelism, it generates
code that is unusual (and faster) than most human-coded assembler. Human-
generated assembler should be maintainable, so it is not good practice to separate
related instructions in non-obvious ways.

ELF File Contents

Header

Loadable section data
read-only (.text, .rodata)
read-write (.data)
relocation (.rela.text, .rela.data)

Control Information
Program Headers (loader/debugger)
Section Headers (linker)

Non-loadable section data
symbol table
string table

ELF files, like UNIX files in general, are byte oriented, not record oriented.

ELF is based on structures. A program reading an ELF file can navigate through the
structures via offset values within the structures. All offsets are in bytes from the
start of the file — useful for fseek/lseek C library functions.

The ELF header contains offsets, sizes and counts of Program Headers and Section
Headers. The Program Headers and Section Headers contain offsets, sizes and counts
of everything else.

Program Headers are useful for the loader and debugger. They contain the
information needed to describe a program in memory. Executable programs, Shared
Objects and “core” files (but not relocatable object files) contain Program Headers.

Section Headers are used by the linker to find the various parts and symbols to be
linked together. Relocatable object files, executable programs and Shared Objects
(but not “core” files) contain Section Headers. Like OS/390 Load Modules and
Program Objects, ELF executable programs and Shared Objects can be relinked.

GAS and the linker both write section data in roughly the same order.

See http://www.tachyonsoft.com/elf.com for links to information about ELF.

ELF Header Contents

Fixed Part:

*File Type (Relocatable, Executable, Shared Object, Core)
*Word Size (32 or 64 bit)

*Endian (MSB: S/390,PPC,Sparc; LSB: Intel)

Variable Part: (depending on word size)
eArchitecture (Intel, S/390, PPC ..))
*Offset to, sizes and number of Program/Section Headers

*Offsets, virtual storage addresses and most length fields
are the width of and aligned to the word size.

With the information in the header, a program running on one architecture can read
an ELF file for a different architecture. All of the information needed to decode an
ELF file is in the header.

The only difference between s390 (31-bit) and s390x (64-bit) is the word size
indicator in the header and the consequent field size/location changes.
Linux for zSeries will load and execute both 31-bit and 64-bit programs.

Before the S/390 machine type was formalized, code X'A390' was used.
The official S/390 machine type code is now X'0016'. Many (all?) of the current
binutils programs recognize both. Older versions may not recognize X'0016'.

Section Header Contents

One entry per section, containing the name, type, attributes,
file offset, size.

Typical Sections:

text executable code

.rodata constant data

.data initialized non-constant data (writable static)
.bss uninitialized data (requires no room in ELF file)

rela.text relocation information for the .text section
.rela.data relocation information for the .data section

.stab debugging information (DW ARF)
.symtab symbols for linking (and debugging)
.strtab strings: symbol names

.note miscellaneous loadable information

.comment miscellaneous non-loadable information

The linker simply concatenates most sections with like names from different modules.

.rela sections can exist for any initialized section. The name of the section containing
the addresses to be relocated is suffixed to .rela (e.g. .rela.text) and the index number
of the containing section is in the .rela section header entry.

The .symtab section is created from the merged symbol table, combining the external
references with the global symbols.

Other special sections can be created, especially for C++. These sections handle
virtual method tables and static constructors and destructors. The linker performs
special processing for many of these special sections.

Program Header Contents

One entry per loadable area, containing the attributes, file offset,
virtual storage location, virtual storage size and initialized size.

Each loadable area contains all of the sections with the same
attributes (read-only, read/write, ...)

For the modifiable data area, the virtual storage size is probably
more than the initialized size — the difference is the total
uninitialized data area size (.bss section).

Virtual storage areas are page aligned. Executable programs do
not need to be relocated since they are linked at the correct load
address. Executable programs can be paged-in as needed.

Shared Objects must be relocated since all are linked to the same
address.

In an executable program or Shared Object, the Program Headers provide a different
view of the same data provided by the Section Headers. The information in the
program headers is organized to be easy to load, whereas the Section Headers provide
all of the details required to link a program.

In Linux, a process (address space) consists of exactly one program and any number
of Shared Objects. In Linux for S/390, programs are always loaded at X'00400000'.
In Linux for zSeries, programs are always loaded at X'00000000 80000000".

In executable programs referencing Shared Objects and in Shared Objects, one of the
Program Header entries points to the information needed to resolve cross-module
references.

Another Program Header entry specifies the name of the “interpreter” for the
program. This is the program actually given control after the program file is loaded.
For executable programs, the “interpreter” is the name of the dynamic linker, which
will load the referenced Shared Objects, resolve the references and give control to the
loaded program. Potentially, ELF files could contain the name of a different
“interpreter” program.

Core File Contents

Core files are produced when a process is terminated by certain
signals — e.g. SIGSEGV (S0C4).

A core file contains one Program Header entry for each area
of virtual storage dumped. Each entry contains the file offset,
size, virtual storage address and attributes of the storage area.

One special Program Header is for a “notes” area, which
contains process status information, PSW, registers, etc.
The “notes” area format is specific to both the Linux
release and hardware architecture.

core files can be read by the gdb program.

If you do not see core files being created, issue the ulimit -a command. It will
probably show that the core file limit is 0. This can be changed by issuing the
ulimit -c unlimited command.

The elfdump program can format the contents of S/390 and Intel/x86 ELF files,
including core files, object files, executable programs and shared objects. The
elfdump program is available via http://www.tachyonsoft.com/elf.html

GCC for z/OS?

Why can't GCC be used for z/OS?

*GCC assumes ASCIL

*GCC needs GLIBC. GLIBC is for UNIX/Linux and ASCIIL.
*GCC generates GNU assembler code. GAS generates ELF.

*GCC debugging information is DW ARF, which is
not (yet) supported by any z/OS debuggers.

*z/OS Program Objects must be created by the binder.
The binder does not read ELF.

eC++ ELF object modules must be processed by the
GNU linker. The GNU linker reads and writes ELF.
The z/OS loader cannot load ELF load modules.

One solution: Dave Pitts altered GCC to accept EBCDIC, produce HLASM and
interface with LE.

Another solution would be to provide an ELF loader for z/OS. This would allow all
of the GNU tools to be used: GCC, GAS, GNU linker and most of GLIBC. The
ASCII problem would still need to be solved.

Our solution: assemble the GNU assembler code produced by GCC directly to GOFF
and provide a replacement for GLIBC, called LIB390.

GCC forz/OS!

GAS/ELF Problem

*GAS syntax assembler can be converted to HLASM
syntax for GOFF. The Tachyon z/Assembler can
automatically assemble GAS source and create GOFF.

*GOFF can be linked by the z/OS binder to create
normal z/OS load modules.

ASCII Problem

*For now, use patches from Dave Pitts' 1370 port or use the
ASCII<->EBCDIC translation support in LIB390.

eIntegrated GCC support for EBCDIC from Cygnus/Red Hat
is in beta test and will be released soon.

The Tachyon z/Assembler can be used for free when used to assemble the output of
the GCC compiler. The free version can generate either GOFF (31-bit) or ELF
(31-bit or 64-bit) object files from GNU assembler source. The free version of the
Tachyon z/Assembler can be downloaded from the Tachyon Software web site at
http://www.tachyonsoft.com

By assembling GAS to GOFF, no changes to GCC are required. This takes
advantage of all of the work done by the GCC maintainers, including the excellent
zSeries instruction optimizer.

In 64-bit code generated by GCC, the operands of the BRASL, BRCL and LARL
instructions are often external references which can be resolved by the GNU linker.
Unlike ELF, GOFF does not have defined relocation types for the operands of these
instructions, so there is no way to assemble the 64-bit code generated by GCC into a
GOFF object file. Until IBM adds support in GOFF and the binder, this problem can
be fixed using a prelinker.

GCC forz/OS!

GLIBC Problem

*Tachyon Software has started an open-source version of
GLIBC for 31-bit OS/390 and z/OS, called LIB390.

*LIB390 is LGPL code, so it cannot be statically linked
with non-open-source products. A goal of the project
is to make LIB390 into a “DLL” so that GCC and
LIB390 can be used in commercial products.

C++ Problem

eC++ support will require a prelinker to perform the
“magic” currently performed by the GNU linker for C++.

The source and object files of LIB390 can be downloaded from the Tachyon
Software web site at http://www.tachyonsoft.com/lib390.html

LIB390 is based on GLIBC with changes and replacement routines as required for
0S/390 and z/OS. Since GLIBC is distributed under the GNU Library General
Public License (LGPL), LIB390 is also distributed under the same license. One
provision of the LGPL is that any user of a program linked with GLIBC must be
allowed to replace the GLIBC routines, usually by relinking. This usually requires the
program to be distributed in object module form so the user can relink it, or else the
program should be dynamically linked to GLIBC. It is intended that a future version
of LIB390 can be dynamically linked with programs, allowing commercial products
to be built with LIB390 while complying with the LGPL.

GCC forz/OS!

Debugger Problem

A DW ARF-based debugger is needed. Anyone want to contribute?

GCC and GAS do not run on z/OS

*For now, GCC can be run on Linux/390 or as a cross-compiler
on Windows or Linux/x86. Linux/390 can be run on Windows
or Linux/x86 under Hercules. The Tachyon z/Assembler runs
on Linux/390, Linux/x86, Windows, AIX and Solaris.

*A project goal is to allow GCC to build itself to run on z/OS.

Using cross-platform development tools like GCC and the Tachyon z/Assembler, you
can build programs on one platform to be executed on another. For instance, you can
build the object files for a program on Linux and then upload them to z/OS where
they can be bound into Program Objects or Load Modules and executed.

With the limited TSO access on z/OS.e, cross-platform development is probably the
preferred method. The only other choice would seem to be a telnet session into z/OS
Unix System Services.

Since IBM FORTRAN and COBOL programs cannot be run under z/OS.e,
GCC FORTRAN (g77) and GNU COBOL could be used to build programs
for z/OS.e since LE would not be needed. The GNU COBOL home page is:
http://www.gnu.org/software/cobol/cobol.html

Hercules is an open-source System/370, System/390 and z/Architecture emulator.
Using Hercules, you can have the fun of installing and running Linux for S/390 and
zSeries on your PC, Macintosh or whatever!

You can download Hercules from: http://www.conmicro.cx/hercules

Hercules will be discussed in sessions 2881 (6:00PM Monday),

2880 (6:00PM Tuesday) and 2861 (4:30PM Wednesday).

How Can You Help?

Cygnus/Red Hat is providing EBCDIC support in GCC.

Tachyon Software is contributing a free version of the
Tachyon z/Assembler for GCC and the start of the
runtime library support.

Your help is needed:

*Runtime library

*C++,COBOL and FORTRAN support
eDebugger and Profiler

*VSE and CM S support

The goal is to have a common set of open-source compilers and other development
tools across all IBM mainframe operating systems: z/OS, OS/390, z/VM, VSE and
Linux for S/390 and zSeries.

There is already enough of the infrastructure in place to build trivial USS
C programs. The near-term milestone is to be able to build real-world 31-bit
z/OS C programs by next SHARE.

This is not a toy. C/C++ for z/OS and GCC are two great mainframe compilers from
IBM.

How to Get Started?

ELF and DWARF for S/390 Links:
http://www.tachyonsoft.com/elf.html

GCC:
http://www.gnu.org/software/gcc/index.html

COBOL for GCC:
http://www.gnu.org/software/cobol/cobol.html

LIB390:
http://www.tachyonsoft.com/1ib390.html

Tachyon z/Assembler for GCC:
http://www.tachyonsoft.com

Or write to: dbond@tachyonsoft.com

