
 M ore than you ever w an ted to
know abou t G C C , G A S and E L F.

S H A R E 98 N ashv ille, T N
Session 8131 M arch 2002

D av id B ond
T achyon Softw are LL C

 dbond@tachyonsoft.com

© Tachyon Software LLC, 2002

Permission is granted to SHARE Incorporated to publish this material for
SHARE activities and for others to copy, reproduce, or republish this material
in a manor consistent with SHARE's By-laws and Canons of Conduct.
Tachyon Software retains the right to publish this material elsewhere.

Tachyon Software is a registered trademark and Tachyon z/Assembler is a
trademark of Tachyon Software LLC.

IBM, HLASM, OS/390, z/OS, z/Architecture, zSeries and System/390 are
trademarks or registered trademarks of the International Business Machines
Corporation.

LINUX is a registered trademark of Linus Torvalds.

Other trademarks belong to their respective owners.

T erm ino logy

O S /390
C /C ++ C om piler
H LA SM
B inder
T SO T E ST , IP C S
G O FF
Program O bject
D LL
D um p D ata Set
SY M records, A D A T A
Language E nvironm ent

L inux
gcc
as
ld
gdb
E LF relocatable
E LF execu tab le
E LF Shared O bjec t
E LF �core� file
D W A R F
glibc

ELF Executable and Linkable Format

Format of object, executable and dump files

DWARF Debug With Arbitrary Record Format

Format of debugging records inside ELF files

GCC GNU Compiler Collection

C, C++, JAVA, FORTRAN, ADA and other compilers

GAS GNU Assembler

Assembler included with GNU tools

L inux D evelopm ent Packages
gcc G N U C om piler C ollection

(C , C ++, O bjective C , F O R T R A N , JA V A ,A D A)

binu tils assem bler, linker

gdb debugger

glibc G N U C /C ++ library

m ake m ake

E ach of these packages are availab le a t d ifferen t levels.
A given Linux d istribu tion w ill prov ide a copy of these
packages a t som e level. Y ou can install o ther levels, as
long as you w atch for com patib ility. F or exam ple, a given
level of gcc m ay requ ire a certa in m in im um binu tils level.

For example, binutils 2.10 is required for gcc 3.0, at least for the S/390 version.
gcc 3.0 generates some instruction operation codes that were not supported by the
GNU assembler prior to binutils 2.10.

H eaders from :
glibc, gcc, L inux

C /C ++
S ource

C /C ++
com piler

gcc

as
ld

A ssem bler
source

E LF
R elocatable

E LF
E xecutab le

glibc
libraries

C /C + + C om pile F low

gcc is the controller program for the compile process. Unless told to do otherwise, it
will invoke the C/C++ preprocessor, C/C++ compiler, the assembler (as) and the
linker (ld).

The C/C++ preprocessor reads the source and header files. The header files are
provided by glibc, gcc, Linux and the application. The preprocessed C/C++ source
code is passed to the C/C++ compiler.

The C/C++ compiler reads the preprocessed source code and generates an
intermediate work file containing assembler source code (gas format). gcc can be
told (via the -S option) to retain the assembler source file (filename.s) and to not
invoke the assembler.

gcc normally invokes the GNU assembler and deletes the temporary assembler
source file. The assembler produces an ELF relocatable object file, normally as a
temporary work file that is passed to the linker. If gcc is invoked with the -c option,
the object file (filename.o) will be retained and the linker will not be invoked.

If run without either -S or -c, gcc then invokes the linker and deletes the temporary
object file. The linker combines the object file with object modules from various
libraries (mostly glibc) and produces and ELF executable program.

You can run gcc with the -v option to see what programs are invoked.

W hy does G C C produce
assem bler source?

G C C is com plex :
!M ultiple languages (C , C ++, F O R T R A N , A D A ...)
!M ultiple operating system s (L inux , A IX , S olaris, W indow s...)
!M ultiple arch itectu res (In te l/x86 , P ow erP C , Sparc , S /390 ...)
!M ultiple ob ject file form ats (C O F F , E LF ...)
!M ultiple debugging form ats (D B X , D W A R F ...)

B y producing assem bler source, m any of the deta ils can be left to the
assem bler. T he O S -supplied assem bler can be used, or the G N U
assem bler (G A S) can be bu ilt for the target arch itecture and O S .

G C C can be bu ilt as a cross-com piler and G A S can be bu ilt as
a cross-assem bler, a llow ing com piles on one system w hich are
targeted for ano ther.

GCC must be aware of the target object file format and debugging information
format in order to pass the correct information to the assembler. For instance, even
though the assembler directives for producing DBX and DWARF debugging
information are the same, the information content is different, so it is up to GCC to
include the correct information. However, it is up to the assembler to actually
produce the output files, so only the assembler has to know the physical file formats.

Since GCC supports multiple programming languages, each language has a unique
front-end processor and uses the common back-end code generator. The front-end
processor is almost completely independent of the target architecture and the back-
end is relatively independent of the source language. Only the back-end of GCC
needs to be ported to new architectures, and once the port is done, all of the GCC
languages are available.

H ow good is G C C ?

G C C is open-source, so it is as good as the effort pu t in to it.

!In te l/x86 optim ization is very good .
!D ave Pitts ' I370 port generates H LA S M and w orks w ith
 O S/390 U S S and LE, how ever there is no optim izer.
!S /390 and S /390x (z/A rch itectu re) ports are excellen t.
 T hey w ere con tribu ted by the sam e IB M group that w rites
 m illicode for the Z900 . T hey have a deep understand ing of
 the S /390 and z/A rch itectu re , so the op tim izer is ou tstand ing
 (and getting better).

M ajor im provem ents as of gcc 3 .02 � try it!

Dave Pitts' I370 port is available in source and executable form from:
http://www.cozx.com/~dpitts/gcc.html

The GCC home page is:
http://www.gnu.org/software/gcc/index.html
The GCC site includes information about recent and upcoming releases and links
to sites from which the source can be downloaded. It is relatively easy to download,
compile and install a new release of GCC. Patch files can be downloaded to upgrade
the source of one release to another. (e.g. From 3.0.2 to 3.0.3)

At this time, GCC 3.03 is current. 3.03 is mostly C++ bug fixes for 3.02.
The next major release is 3.1, scheduled for April 15, 2002, with maintenance
releases scheduled for June 15 and August 15.

GCC releases are controlled by the GCC Steering Committee. Resources are
largely provided by Cygnus/Red Hat.

The primary maintainer of the Linux for S/390 and zSeries version of GCC is
Hartmut Penner of IBM Germany.

S/390 and z/A rchitec ture T ools
G C C supports both s390 and s390x from the sam e program .
T he defau lt is s390 (31-b it). U se the -m 64 com piler op tion
to generate s390x (64-b it z/A rch itectu re) code.

binu tils and glibc m ust be bu ilt fo r either s390 or s390x
and the correct version m ust be used .

s390 version requ ires R elative and Im m ediate instruction set
support. IE EE floating poin t is assum ed, bu t can be prov ided
by em ulation in L inux for S/390 .

Linux for S/390 can only run on machines with the Relative and Immediate
instruction set support since Linux for S/390 is built using GCC. However, Linux for
S/390 can emulate the S/390 advanced floating point instructions in software so it
does not require IEEE floating point support.

Since the z/Architecture includes the Relative and Immediate instructions and IEEE
floating point support, Linux for zSeries has no special hardware requirements
beyond a z800 or z900 machine.

>cat hello.c
#include <stdio.h>
int main(

int argc,
char * argv[])

{
puts("Hello world.");
return 0;

}
>gcc -O3 -S hello.c

C Source Program

This is the classic �Hello world� program in C.

The UNIX/Linux �cat� command can be used to print a file to the terminal.

The hello.c program is compiled with the -O3 flag for maximum optimization and
the -S flag to cause the compiler to generate the assembler source file and stop.
If the compile is successful, the assembler source will be put in a file named hello.s

>cat hello.s
.file "hello.c" #d ata for .n ote sectio n
.section .rodata #start .ro da ta sec tion
.align 2 #h alfw ord alignm ent

.LC18: #in te rna l lab el
.string "Hello world." #d efine s trin g co nstan t

.text #start .text section
.align 4 #fullw o rd align m en t

.globl main #entry po int d efin ition
.type main,@function

main:
stm %r13,%r15,52(%r15) #save ca ller 's registe rs
bras %r13,.LTN0_0 #R 1 3= literal base

.LT0_0:

.LC19:
.long .LC18 #add ress o f string con stant

G A S Source � page 1 o f 2

This is the 31-bit GNU assembler code produced by GCC 3.02 for Linux for S/390.
The comments generated by GCC are omitted. The comments to the right of the
GNU assembler code were added by hand.

.LC20:
.long puts #add ress of pu ts fu nc tion

.LTN0_0:
lr %r1,%r15 #stack fram e setu p
ahi %r15,-96
st %r1,0(%r15)
l %r3,.LC20-.LT0_0(%r13)#call p uts func tion
l %r2,.LC19-.LT0_0(%r13)
basr %r14,%r3
lhi %r2,0 #se t re turn value
l %r4,152(%r15) #resto re retu rn add ress
lm %r13,%r15,148(%r15) #resto re calle r's regis ters
br %r4 #re turn to ca ller

.Lfe1:
.size main,.Lfe1-main
.ident "GCC: (GNU) 3.0.2" #d ata for .com m en t sectio n

G A S Source � page 2 o f 2

G A S Syntax
G A S is free-form . C ontinuation is ind icated by end ing a line
w ith a backslash (\), just like C . M ultiple statem ents are
allow ed per line, each ended w ith a sem icolon (;).

C om m ents start w ith a pound sign /hash m ark (#) and
continue fo r the rest o f the line . C ontinuation is allow ed .

Labels end w ith a colon (:). A ssem bler d irectives start
w ith a period (.). E veryth ing else is a m achine instruction .

S ym bols consist of the letters A -Z, a-z , d ig its 0 -9 , underscore
(_), dollar sign ($) and period(.). Sym bols are case sensitive.

G A S has no H LA S M -like m acro facility.

UNIX and LINUX are C-based, so it is natural that the GNU assembler syntax details
are very C-like.

GCC allows assembler instructions to be included in C and C++ code using the asm
language extension. GCC writes these assembler instructions directly to the GAS
file.

The primary use of GAS is as a compiler back-end. Very little of LINUX code is
written in assembler, even in the kernel. Because few humans code in GNU
assembler, GAS does not need the level of sophistication found in HLASM
(powerful macros, DSECTs, USINGs, good diagnostics).

R egisters, L abels, N um bers
R egisters:
%r0 - %r15 G eneral registers
%f0 - %f15 F loating poin t registers
. C urren t location counter (like H L A S M *)

Labels:
.Lxxxx: In ternal label � no t visible in debugger
0: - 9: tem porary labels, referenced by (for exam ple)

0B (backw ard reference) o r 1F (forw ard reference).
If not defined , sym bols are assum ed to be ex ternal references.

N um bers:
C -like syn tax , if starts w ith 0x , rem ainder of num ber is
hexadecim al, if starts w ith 0b , rem ainder of num ber is binary,
otherw ise if starts w ith 0 , num ber is octal, o therw ise decim al.

Temporary labels are very nice features of the GNU assembler language. They allow
local labels to be defined without the need to resort to HLASM's &SYNDX variable
symbol. For instance, a reference to 2F is resolved to the next (forward) definition of
the temporary label 2: and a reference to 9B is resolved to the nearest previous
(backward) definition of the temporary label 9:.

As an example, the following code is generated by GCC for the strlen() function:
sr 0,0
lr %r12,%r11

0: srst 0,%r12

jo 0b
lr %r12,0
sr %r12,%r11

This same code sequence could be generated later without any conflict between the
definitions of 0:.

M achine Instructions
G A S m achine instructions are sim ilar to H LA SM form at, except:

In R X instructions, the base and index registers are reversed .
If on ly one reg ister is specified , it is assum ed to be a base register.

A dditional b ranch m nem onics (G A S : H LA S M)
JH E: B R C 10 JLE : B R C 12 JLH : B R C 6
JN H E : B R C 5 JN LE : B R C 3 JN LH : B R C 9
S am e for B C and B C R m nem onics.

D ifferen t B R C L m nem onics (G A S : H LA SM)
JG : JLU JG E : JLE JG H : JL H
JG H E : B R C L 10 JG L: JLL JG LE : B R C L 12
JG LH : B R C L 6 JG M : JLM JG N E : JL N E
JG N H : JLN H JG N H E : B R C L 5 JG N L: JL N L
... etc .

GCC/GAS introduced extended mnemonics for the 6 condition code masks missing
from the HLASM extended mnemonics. Unfortunately, the GCC/GAS JLE and JLH
extended mnemonics for BRC conflict with the HLASM extended mnemonics for
BRCL. GCC/GAS replaced the JLxxx (Jump Long) extended mnemonics for BRCL
with the JGxxx (Jump Grande) mnemonics.

See http://www.tachyonsoft.com/txac.htm for instruction tables that include the
GCC/GAS extended mnemonics. These tables include instructions from all of the
Principles of Operation books as well instructions published in other IBM manuals or
discovered from other sources.

Storage D efin ition D irectives
G A S H LA S M
.byte D C X 'xx '
.short D C H L2 'nn '
.long D C F L4 'nn ' or D C A L4(sym bol)
.quad D C F D L8 'nn ' or D C A D L8(sym bol)
.single D C E B L4 'nn '
.double D C D B L 8 'nn '
.com m C O M , D S
.ascii D C C 'ccccc'
.string D C C 'ccccc',X '0 '

G A S does not a lign constan ts based on type.
G C C does not produce .single and .double � IEE E value
 is generated by .long 0xX X X X X X X X constan ts.
.ascii and .string use C -like syn tax fo r characters,
 includ ing escape values. (e .g. "\n\0")

GAS does not align anything. Even machine instructions are not halfword aligned!
However the .align directive can align to any power of 2.

.ascii and .string operands are strings enclosed in double quotes. The .string directive
includes a terminating X'00' byte in the string. .string "hello" is the same as
.ascii "hello\0".

.ascii and .string operands can include �escape� values:
\a = X'07' (BEL) \b = X'08' (BS) \f = X'0C' (FF)
\n = X'0A' (LF) \r = X'0D' (CR) \t = X'09' (TAB)
\v = X'0B' (VT) \" = double quote \\ = back slash
\x<hex digits> = X'<hex digits>' \<octal digits>

.byte, .short, .long and .quad operands can be expressions. Numbers are decimal
unless they start with a zero. Zero is the �escape� character, allowing octal,
hexadecimal (0x) or binary values (0b). Character values can also be included
(e.g. 'a') and support the same set of escape values as can be specified in .ascii
and .string operands.

M iscellaneous D irectives
G A S H LA S M
.align C N O P
.file none
.g lobl E N T R Y
.iden t none
.local none
.org O R G
.set E Q U
.size none
.stab A D A TA
.type X A T T R
.version none
.w eak W X T R N

N otes: .o rg is forw ard on ly. .align fills w ith X '07 ' bytes by defau lt.

Unlike HLASM's EQU, .set can be used more than once for the same symbol,
allowing a symbol to have a different value for different parts of the assembly.
.set can also be used to change the value of the location counter in a forward
direction: .set .,.+4

.align fills with X'07' bytes generating �NOPR 7� instructions in any halfwords.

The inability of the GNU assembler to support ORG to a previous location vastly
simplifies the assembler logic!

Section D efin itions
G A S H LA S M
.tex t R S EC T
.data C S EC T
.bss C O M
.section R S EC T /C S E C T /LO C T R

G A S E LF sections are sim ilar to H LA S M G O F F classes.

T here is no G A S equivalen t to D X D or D S E C T .

.tex t is read-only execu tab le code and literals

.data is m odifiable in itialized storage

.bss is m odifiable un in itia lized storage

O ther sections m ay be defined , e.g . .rodata is fo r read-on ly data .

.text, .data, .bss and .rodata are the only sections generated by GCC for normal C
code.

For C++ code, GCC generates many additional sections that are recognized by the
GNU linker for special processing. These special sections are to handle static
constructors and destructors and other C++ features that must be processed at link
time.

L inux/390 R egister U sage
R 0-R 1 N ot saved
R 2-R 3 N ot saved , param eters and retu rn values
R 4-R 5 N ot saved , param eters
R 6 S aved , param eter
R 7-R 12 S aved
R 13 S aved , o ften litera l pool base register
R 14 N ot saved , retu rn address
R 15 S aved , stack poin ter

F 0 N ot saved , param eter and retu rn value
F 2 N ot saved , param eter
F 4 ,F 6 S aved , z /A rch itectu re param eters
F 1 ,F 3 ,F 5 ,F 7-F15 N ot saved

A ccess R egisters N ot saved

Function return values:

Type Linux for S/390 Linux for zSeries
char, short, int, long, * R2 R2
or 1, 2 and 4-byte structures

long long and 8-byte structures R2 and R3 R2

float, double F0 F0

Function parameter values:

First 5 integer (char, short, int, long, long long) and pointer parameters are passed in
registers R2, R3, R4, R5 and R6. For Linux for S/390, long long parameters are
passed in register pairs. Structures of 1, 2, 4 or 8 bytes are passed as integers.

In Linux for S/390, first 2 floating point parameters are passed in F0 and F2. In
Linux for zSeries, first 4 floating point parameters are passed in F0, F2, F4 and F6.

All other parameters are passed on the stack. If the return value is not an integer,
pointer, float, double or 1, 2, 4 or 8-byte structure, a �hidden� parameter in R2
will contain the address of the return area.

L inux/390 S tack F ram e
S /390 zS eries Purpose
0-3 0-8 back chain
4-15 8-31 reserved
16-23 32-47 scratch area
24-63 48-127 saved r6-r15 of caller function
64-79 128-143 saved f4 and f6 of caller function
80-95 144-159 undefined
96 160 outgo ing args passed from caller to callee
96+x 160+x possible stack a lignm ent to 8 -bytes
96+x+y 160+x+y alloca space of caller (if used)
96+x+y+z 160+x+y+z au tom atics of caller (if used)

O nly the reg isters that are m odified by a function need to be saved .
T he stack grow s tow ard low er addresses.

Stack frames are always double-word aligned.

The stack of the process's initial thread starts at the high end of virtual storage and
grows down. For Linux for S/390, the high end is X'7FFFFFFF' (2G-1).
In Linux for zSeries 2.4, 42 bits of the 64-bit possible virtual storage range are used,
so the highest address is X'000003FF FFFFFFFF' (4T-1).

Linux threads are like OS/390 tasks. Each thread has its own stack.

G C C O utput � N otes

.section .rodata

.align 2
.LC18:

.string "Hello world."

.text
.align 4

.globl main
.type main,@function

main:
stm %r13,%r15,52(%r15)

A half-w ord aligned ,
nu ll-term inated A SC II
string constan t is defined
in the .rodata section .

A n ex ternally visible function
nam ed �m ain� is defined in
the .tex t section . It is fu llw ord
aligned . T he function saves
only r13 , r14 and r15 since
those are the on ly non-
vo latile registers m odified .

GAS uses the strongest .align directive within a section to set the alignment for the
section. When combining sections, the linker uses the strongest alignment contributed
by any object module for the section alignment within the program.

GCC generates the minimum STM instruction required to save registers that must be
preserved when control is returned to the caller. When generating code, GCC
first tries to use the volatile registers (0-5), which are the registers that a caller does
not expect to be preserved across a call. If all of the volatile registers are used, GCC
uses the highest numbered register available. This allows GCC to generate minimal
STM/LM instructions in the function prolog and epilog.

G C C O utput � N otes
bras %r13,.LTN0_0

.LT0_0:

.LC19:
.long .LC18

.LC20:
.long puts

.LTN0_0:

lr %r1,%r15
ahi %r15,-96
st %r1,0(%r15)

A new stack fram e of 96 bytes
is allocated and the address of
the caller's stack fram e is saved
(back chain).

R egister 13 is se t up as the
base register for the litera l poo l.
T w o address constan ts are in
the literal poo l: the address of
the string constan t in .rodata
and the address of the ex ternal
function nam ed �pu ts� .

If a function does not call another function, it is called a �leaf� function. Leaf
functions that do not modify any of the caller's non-volatile registers do not need to
save and restore any registers, so no stack frame is needed.

The GCC �literal pool� is actually a set of constants generated near the start of each
function and usually addressed via R13 which is set up via the BRAS instruction.
The label LT0_0 for this function is used as the base address of the literal pool
when literals are referenced.

If local variables need to be allocated in the function's stack frame, more than 96
bytes would be needed and the AHI instruction would reflect this. The stack frame
size is always a multiple of 8 to ensure that stack frames are doubleword aligned.

G C C O utput � N otes

l %r3,.LC20-.LT0_0(%r13)
l %r2,.LC19-.LT0_0(%r13)
basr %r14,%r3

lhi %r2,0
l %r4,152(%r15)
lm %r13,%r15,148(%r15)
br %r4

T he re tu rn value is loaded
in to register 2 ; the retu rn
address is loaded into
reg ister 4 ; reg isters 13 and
15 are restored ; con trol is
retu rned to the caller.

R egister 3 is loaded
w ith the address o f
the �pu ts� function ;
reg ister 2 is loaded w ith
the first param eter;
� pu ts� function called .

GCC generates explicit displacement values for literal references by subtracting the
base address of the literal pool (LT0_0 in this case) from the address of the literal.

Unlike OS/360 standard linkage conventions, Linux/390 does not require that the
called routine's address be in any specific register. Called routines cannot expect
that the starting address is in a register.

In the call to the �puts� function, the load for the address of �puts� is performed
as far in advance of the BASR as possible to reduce pipeline stalls. The load
instructions for R2 and R3 can run in parallel.

In the function epilog, the three instruction sequence (L,LM,BR) is used instead
of the minimal two instruction sequence (LM 13,15,148(15);BR 14) to allow the
maximum amount of parallelism. In the three instruction sequence, the LM
instruction can execute in parallel with the BR and subsequent instructions.
Session 8158 (8:00AM Thursday) discusses these performance issues.

Because GCC understands how to exploit instruction parallelism, it generates
code that is unusual (and faster) than most human-coded assembler. Human-
generated assembler should be maintainable, so it is not good practice to separate
related instructions in non-obvious ways.

E L F F ile C ontents

H eader

Loadable section data
read-on ly (.text, .rodata)
read-w rite (.data)
relocation (.re la .tex t, .rela .data)

C ontrol In form ation
P rogram H eaders (loader/debugger)
S ection H eaders (linker)

N on-loadable section data
sym bol tab le
string tab le

ELF files, like UNIX files in general, are byte oriented, not record oriented.

ELF is based on structures. A program reading an ELF file can navigate through the
structures via offset values within the structures. All offsets are in bytes from the
start of the file � useful for fseek/lseek C library functions.

The ELF header contains offsets, sizes and counts of Program Headers and Section
Headers. The Program Headers and Section Headers contain offsets, sizes and counts
of everything else.

Program Headers are useful for the loader and debugger. They contain the
information needed to describe a program in memory. Executable programs, Shared
Objects and �core� files (but not relocatable object files) contain Program Headers.

Section Headers are used by the linker to find the various parts and symbols to be
linked together. Relocatable object files, executable programs and Shared Objects
(but not �core� files) contain Section Headers. Like OS/390 Load Modules and
Program Objects, ELF executable programs and Shared Objects can be relinked.

GAS and the linker both write section data in roughly the same order.

See http://www.tachyonsoft.com/elf.com for links to information about ELF.

E L F H eader C onten ts

F ixed P art:
!F ile T ype (R elocatab le, Execu table , S hared O bject, C ore)
!W ord S ize (32 or 64 bit)
!E ndian (M S B : S /390 ,PP C ,S parc; LS B : In tel)

V ariab le P art: (depending on w ord size)
!A rchitectu re (In tel, S /390 , P PC ...)
!O ffset to, sizes and num ber of P rogram /S ection H eaders
!O ffsets, virtual storage addresses and m ost length fie lds
 are the w id th of and aligned to the w ord size .

With the information in the header, a program running on one architecture can read
an ELF file for a different architecture. All of the information needed to decode an
ELF file is in the header.

The only difference between s390 (31-bit) and s390x (64-bit) is the word size
indicator in the header and the consequent field size/location changes.
Linux for zSeries will load and execute both 31-bit and 64-bit programs.

Before the S/390 machine type was formalized, code X'A390' was used.
The official S/390 machine type code is now X'0016'. Many (all?) of the current
binutils programs recognize both. Older versions may not recognize X'0016'.

Section H eader C onten ts
O ne en try per section , con tain ing the nam e, type, attribu tes,
file o ffset, size .

T ypica l S ections:
.tex t execu tab le code
.rodata constan t data
.data in itialized non-constan t data (w ritab le static)
.bss un in itialized data (requ ires no room in E LF file)
.rela .tex t re location in form ation fo r the .tex t section
.rela .data relocation in form ation fo r the .data section
.stab debugging in form ation (D W A R F)
.sym tab sym bols fo r linking (and debugging)
.strtab strings: sym bol nam es
.no te m iscellaneous loadable in form ation
.com m ent m iscellaneous non-loadable in form ation

The linker simply concatenates most sections with like names from different modules.

.rela sections can exist for any initialized section. The name of the section containing
the addresses to be relocated is suffixed to .rela (e.g. .rela.text) and the index number
of the containing section is in the .rela section header entry.

The .symtab section is created from the merged symbol table, combining the external
references with the global symbols.

Other special sections can be created, especially for C++. These sections handle
virtual method tables and static constructors and destructors. The linker performs
special processing for many of these special sections.

Program H eader C onten ts
O ne en try per loadable area, con tain ing the attribu tes, file o ffset,
virtual sto rage location , v irtual sto rage size and in itia lized size .

E ach loadab le area con tains a ll of the sections w ith the sam e
attribu tes (read-on ly, read/w rite, ...)

F or the m odifiable data area, the v irtual storage size is probably
m ore than the in itia lized size � the d ifference is the to tal
un in itialized data area size (.bss section).

V irtual sto rage areas are page aligned . E xecu table program s do
not need to be re located since they are linked at the correct load
address. Execu table program s can be paged-in as needed .

S hared O bjects m ust be re located since a ll are linked to the sam e
address.

In an executable program or Shared Object, the Program Headers provide a different
view of the same data provided by the Section Headers. The information in the
program headers is organized to be easy to load, whereas the Section Headers provide
all of the details required to link a program.

In Linux, a process (address space) consists of exactly one program and any number
of Shared Objects. In Linux for S/390, programs are always loaded at X'00400000'.
In Linux for zSeries, programs are always loaded at X'00000000 80000000'.

In executable programs referencing Shared Objects and in Shared Objects, one of the
Program Header entries points to the information needed to resolve cross-module
references.

Another Program Header entry specifies the name of the �interpreter� for the
program. This is the program actually given control after the program file is loaded.
For executable programs, the �interpreter� is the name of the dynamic linker, which
will load the referenced Shared Objects, resolve the references and give control to the
loaded program. Potentially, ELF files could contain the name of a different
�interpreter� program.

C ore F ile C on tents
C ore files are produced w hen a p rocess is term inated by certa in
signals � e .g . S IG S E G V (S 0C 4).

A core file con tains one Program H eader en try for each area
of v irtual storage dum ped . E ach en try con tains the file offset,
size , virtual sto rage address and attribu tes of the storage area .

O ne special P rogram H eader is for a �notes� area , w hich
contains p rocess status in form ation , P S W , reg isters, etc .
T he �notes� area fo rm at is specific to both the L inux
release and hardw are arch itectu re.

core files can be read by the gdb program .

If you do not see core files being created, issue the ulimit -a command. It will
probably show that the core file limit is 0. This can be changed by issuing the
ulimit -c unlimited command.

The elfdump program can format the contents of S/390 and Intel/x86 ELF files,
including core files, object files, executable programs and shared objects. The
elfdump program is available via http://www.tachyonsoft.com/elf.html

G C C for z/O S?
W hy can 't G C C be used for z/O S ?
!G C C assum es A S C II.
!G C C needs G LIB C . G L IB C is fo r U N IX /L inux and A S C II.
!G C C generates G N U assem bler code. G A S generates E LF .
!G C C debugging in form ation is D W A R F , w hich is
 no t (yet) supported by any z/O S debuggers.
!z/O S P rogram O bjects m ust be created by the b inder.
 T he binder does no t read E LF .
!C ++ E LF ob ject m odules m ust be p rocessed by the
 G N U linker. T he G N U linker reads and w rites E LF .
 T he z/O S loader cannot load EL F load m odules.

One solution: Dave Pitts altered GCC to accept EBCDIC, produce HLASM and
interface with LE.

Another solution would be to provide an ELF loader for z/OS. This would allow all
of the GNU tools to be used: GCC, GAS, GNU linker and most of GLIBC. The
ASCII problem would still need to be solved.

Our solution: assemble the GNU assembler code produced by GCC directly to GOFF
and provide a replacement for GLIBC, called LIB390.

G C C for z/O S!
G A S /E L F Prob lem
!G A S syn tax assem bler can be converted to H LA S M
 syn tax fo r G O FF . T he T achyon z/A ssem bler can
 au tom atically assem ble G A S source and create G O F F .
!G O F F can be linked by the z/O S binder to create
 norm al z/O S load m odules.

A S C II P roblem
!F or now , use patches from D ave Pitts ' I370 port o r use the
 A SC II<->E B C D IC transla tion support in LIB 390.
!In tegrated G C C support fo r EB C D IC from C ygnus/R ed H at
 is in beta test and w ill be released soon .

The Tachyon z/Assembler can be used for free when used to assemble the output of
the GCC compiler. The free version can generate either GOFF (31-bit) or ELF
(31-bit or 64-bit) object files from GNU assembler source. The free version of the
Tachyon z/Assembler can be downloaded from the Tachyon Software web site at
http://www.tachyonsoft.com

By assembling GAS to GOFF, no changes to GCC are required. This takes
advantage of all of the work done by the GCC maintainers, including the excellent
zSeries instruction optimizer.

In 64-bit code generated by GCC, the operands of the BRASL, BRCL and LARL
instructions are often external references which can be resolved by the GNU linker.
Unlike ELF, GOFF does not have defined relocation types for the operands of these
instructions, so there is no way to assemble the 64-bit code generated by GCC into a
GOFF object file. Until IBM adds support in GOFF and the binder, this problem can
be fixed using a prelinker.

G C C for z/O S!
G L IB C P rob lem
!T achyon Softw are has started an open-source version of
 G LIB C for 31-bit O S /390 and z/O S , called LIB 390 .
!L IB 390 is LG P L code, so it cannot be statically linked
 w ith non-open-source p roducts. A goal of the project
 is to m ake LIB 390 in to a �D LL� so that G C C and
 L IB 390 can be used in com m ercial products.

C + + P rob lem
!C ++ support w ill requ ire a prelinker to perform the
 �m agic� curren tly perform ed by the G N U linker for C ++.

The source and object files of LIB390 can be downloaded from the Tachyon
Software web site at http://www.tachyonsoft.com/lib390.html

LIB390 is based on GLIBC with changes and replacement routines as required for
OS/390 and z/OS. Since GLIBC is distributed under the GNU Library General
Public License (LGPL), LIB390 is also distributed under the same license. One
provision of the LGPL is that any user of a program linked with GLIBC must be
allowed to replace the GLIBC routines, usually by relinking. This usually requires the
program to be distributed in object module form so the user can relink it, or else the
program should be dynamically linked to GLIBC. It is intended that a future version
of LIB390 can be dynamically linked with programs, allowing commercial products
to be built with LIB390 while complying with the LGPL.

G C C for z/O S!
D eb u gger P rob lem

A D W A R F -based debugger is needed . A nyone w ant to con tribu te?

G C C an d G A S d o n ot ru n on z/O S
!F or now , G C C can be run on Linux/390 or as a cross-com piler
 on W indow s or L inux/x86 . L inux/390 can be run on W indow s
 or L inux/x86 under H ercu les. T he T achyon z/A ssem bler runs
 on Linux/390 , L inux/x86 , W indow s, A IX and S olaris.
!A pro ject goal is to a llow G C C to bu ild itself to run on z/O S .

Using cross-platform development tools like GCC and the Tachyon z/Assembler, you
can build programs on one platform to be executed on another. For instance, you can
build the object files for a program on Linux and then upload them to z/OS where
they can be bound into Program Objects or Load Modules and executed.

With the limited TSO access on z/OS.e, cross-platform development is probably the
preferred method. The only other choice would seem to be a telnet session into z/OS
Unix System Services.

Since IBM FORTRAN and COBOL programs cannot be run under z/OS.e,
GCC FORTRAN (g77) and GNU COBOL could be used to build programs
for z/OS.e since LE would not be needed. The GNU COBOL home page is:
http://www.gnu.org/software/cobol/cobol.html

Hercules is an open-source System/370, System/390 and z/Architecture emulator.
Using Hercules, you can have the fun of installing and running Linux for S/390 and
zSeries on your PC, Macintosh or whatever!
You can download Hercules from: http://www.conmicro.cx/hercules
Hercules will be discussed in sessions 2881 (6:00PM Monday),
2880 (6:00PM Tuesday) and 2861 (4:30PM Wednesday).

H ow C an Y ou H elp?
C ygnus/R ed H at is prov id ing E B C D IC support in G C C .

T achyon S oftw are is con tribu ting a free version of the
T achyon z/A ssem bler for G C C and the start o f the
run tim e lib rary support.

Y ou r h elp is n eed ed :
!R untim e library
!C ++, C O B O L and F O R T R A N support
!D ebugger and P rofiler
!V S E and C M S support

The goal is to have a common set of open-source compilers and other development
tools across all IBM mainframe operating systems: z/OS, OS/390, z/VM, VSE and
Linux for S/390 and zSeries.

There is already enough of the infrastructure in place to build trivial USS
C programs. The near-term milestone is to be able to build real-world 31-bit
z/OS C programs by next SHARE.

This is not a toy. C/C++ for z/OS and GCC are two great mainframe compilers from
IBM.

H ow to G et S tarted?
E LF and D W A R F for S /390 Links:

http://www.tachyonsoft.com/elf.html

G C C :
http://www.gnu.org/software/gcc/index.html

C O B O L for G C C :
http://www.gnu.org/software/cobol/cobol.html

LIB 390:
http://www.tachyonsoft.com/lib390.html

T achyon z/A ssem bler for G C C :
http://www.tachyonsoft.com

O r w rite to : dbond@tachyonsoft.com

